Increased Depth of Cellular Imaging in the Intact Lung Using Far-Red and Near-Infrared Fluorescent Probes

نویسندگان

  • Abu-Bakr Al-Mehdi
  • Mita Patel
  • Abu Haroon
  • Darla Reed
  • Betsy Ohlsson-Wilhelm
  • K. Muirhead
  • Brian D. Gray
چکیده

Scattering of shorter-wavelength visible light limits the fluorescence imaging depth of thick specimens such as whole organs. In this study, we report the use of four newly synthesized near-infrared and far-red fluorescence probes (excitation/emission, in nm: 644/670; 683/707; 786/814; 824/834) to image tumor cells in the subpleural vasculature of the intact rat lungs. Transpelural imaging of tumor cells labeled with long-wavelength probes and expressing green fluorescent protein (GFP; excitation/emission 488/507 nm) was done in the intact rat lung after perfusate administration or intravenous injection. Our results show that the average optimum imaging depth for the long-wavelength probes is higher (27.8 ± 0.7  μm) than for GFP (20 ± 0.5  μm; p = 0.008; n = 50), corresponding to a 40% increase in the volume of tissue accessible for high-resolution imaging. The maximum depth of cell visualization was significantly improved with the novel dyes (36.4 ± 1  μm from the pleural surface) compared with GFP (30.1 ± 0.5  μm; p = 0.01; n = 50). Stable binding of the long-wavelength vital dyes to the plasma membrane also permitted in vivo tracking of injected tumor cells in the pulmonary vasculature. These probes offer a significant improvement in the imaging quality of in situ biological processes in the deeper regions of intact lungs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome

The ability to modulate the fluorescence of optical probes can be used to enhance signal-to-noise ratios for imaging within highly autofluorescent environments, such as intact tissues and living organisms. Here, we report two bacteriophytochrome-based photoactivatable near-infrared fluorescent proteins, named PAiRFP1 and PAiRFP2. PAiRFPs utilize haem-derived biliverdin, ubiquitous in mammalian ...

متن کامل

Far‐Red/Near‐Infrared Conjugated Polymer Nanoparticles for Long‐Term In Situ Monitoring of Liver Tumor Growth

The design and synthesis is reported for a fluorescent conjugated polymer (CP), poly{[4,4,9,9-tetrakis(4-(octyloxy)phenyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene)]-alt-co-[4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole]} (PIDT-DBT), with absorption and emission profiles fallen within far-red/near infrared (FR/NIR) region and further demonstrate its application in long-term in vitro cell t...

متن کامل

Comparative study reveals better far-red fluorescent protein for whole body imaging

Genetically encoded far-red and near-infrared fluorescent proteins enable efficient imaging in studies of tumorigenesis, embryogenesis, and inflammation in model animals. Here we report comparative testing of available GFP-like far-red fluorescent proteins along with a modified protein, named Katushka2S, and near-infrared bacterial phytochrome-based markers. We compare fluorescence signal and s...

متن کامل

Far-Red and Near-Infrared Seminaphthofluorophores for Targeted Pancreatic Cancer Imaging

Molecular probes that selectively highlight pancreatic cancer (PC) tissue have the potential to improve pancreatic ductal adenocarcinoma (PDAC) margin assessment through the selective highlighting of individual PC cells. Herein, we report a simple and unique family of systematically modified red and near-infrared fluorescent probes that exhibit a field-effect-derived redshift. Two of thirteen p...

متن کامل

Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Biomedical Imaging

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006